第二节:能谱仪拓展技术及应用

主要内容:

一、紫外光电子能谱(UPS) 二、反射电子能量损失谱(REELS) 三、离子散射谱(ISS)

一、紫外光电子能谱(UPS)

- I: UPS原理和功能
- II: UPS数据处理
- III: UPS的应用举例

UPS简介

光电子的动能

- 材料壳层(芯能级)电子的结合 能一般在几百eV的量级,所以一价态电子er
 般要求我们使用X射线。(XPS) 壳层电子er
 而如果我们要求探测材料的价 带电子,我们使用紫外灯光源 就足够了。(UPS)
 - 元素芯能级的电子和原子核靠的非常近,和其他原子相互作用比较弱,反映的是每个原子所代表的元素的本征性质。
 - 原子费米能级附近的电子(价态电子)在材料内部比较巡游,携带的是整个材料体系的性质,因此反映的是材料电子关联相互作用之后的信息。

UPS的激发源

UPS的工作原理和XPS一样,但是能量远远小于X光,因此有比 较好的能量分辨率来研究价带的电子结构,是XPS手段的一个 重要补充

一般的UPS光源通过对惰性气体放电来实现,He、Ne、Ar 、Kr、Xe等,能量一般在几十个eV左右。

GAS PHOTON ENERGY (EV)

Ar I	11.7
Ne I	16.8
He I	21.2
Ne II	26.9
Ar II	30.3
He II	40.8

氦气放电发射

- 通过气体放电产生的UV光一般含有好几个线型。这些本征线型的光子能量和相对强度也很不相同。
- 其中主要的能量是Hel和Hell,见下表格。
- 而其中的He-lα 线型 (21.22 eV) 是强度最强的,因此其他的线型光子能量组成我们一般可以忽略。

te	6	- $\langle He \parallel 40.81 eV \rangle$	
Intra		- \	
n cou	4	- He I 21.22eV	
ctro	-	- \ / \	
oele	2	- He I 23.09eV	
rnot		- / /	
•	0		
		0.1 1 10 To	rr
		Discharge pressure	

	19 Section		
	Emission Line	Photon Energy / eV	
	Hela	21.22	5
	Helβ	23.09	
	Helγ	23.74	
	Helδ	24.04	le sa
B	Helɛ	24.21	L
		0.012 17	1997

	and the second se
Emission Line	Photon Energy / eV
Hell a	40.81
Hell B	48.37
Hell γ	51.02
Hellδ	52.24

Hel 的UPS谱

利用UV灯和X光得到的Ag价态谱比较

- 材料的价态谱既可以利用UPS得到,也可以在测量XPS时测得。而相比来说, XPS(左侧)到的谱信号强度比较弱,需要很长的时间才能得到信噪比好的谱。
- 而UPS得到的价态谱强度要大得多,要高3、4个数量级,这是因为低能电子相对于21.2eV的电子有更大的光电离截面.因此采谱时间更快,同时UPS有高的能量分辨率,可以清楚分辨一些比较精细的feature。

标准金样品的UPS谱图分析

- ➤一般需要对样品进行加负偏压处理,可以帮助我们分析 材料的功函数;同时加偏压,可以增强电子计数率,特 别是二次电子部分。
- ▶ 从右图的谱中我们可以看到Au的UPS在8eV以后开始剧 烈上升,表明有比较强的二次电子。
- 高分辨率的费米边谱和二次电子阶段谱可以进一步帮助 我们得到材料的功函数:

 $\Phi = hv - (E_{Cutoff} - E_{Fermi}) = 5.1 \text{ eV}$

UPS的表面敏感性

UPS的表面敏感性——清洁前后Au的价带谱结构

计算截止边的小程序

																	Ili	-11-0x-			
Ga	9 -	(" →) =						WF	calcula	tor.xlsx - Mi	rosoft Exce	2									x
	Home	Insert	Page Layout	Formulas	Data	Review V	/iew A	crobat											0	- 1	₽ X
1	🔏 Cut		字 体	× 11	× (A* .*)		8.x			Caparal							Σ AutoSum	A d	ĥ.		
	🖹 Сору		**		AA					General			<u>i</u>	1 🖵 🖉			🐺 Fill 👻	ZT I			
Paste	I Forma	t Painter	BI <u>U</u> -	🗄 • 🔕 •	$\mathbf{A} - \begin{bmatrix} abc \\ A \end{bmatrix}$	통 좀 될	< >	Merge & Cer	nter 👻	ഈ ≁ %	• • • • • • • • • • • • • • • • • • •	Condi Forma	itional Forma tting ∗ as Tabl	at Cell e ≖ Styles ≖	Insert Delet	te Format	Clear *	Sort & Fin Filter ▼ Sel	d&. ect ≖		
	Clipboard	G.		Font	G.		Alignm	ent	- Ga	Numb	er f	a l	Styles		Cell	s	E	diting			
	M11	•	fx f																		¥
	A	В	С	D	Æ	T	K	Ī.	M		N	0	Р	۵	R	S	Т	II	Ų	t	-
1	**		Ū		2			Paste cu	it-of	f data	to yell	ow box	<u>۔</u> د	~			•	Ŭ			Ē
2								Enter ma	ximu	m from	liffere	ntiate	ed data i	n blue	box (as :		D	fferentiated cu	t off		=
3																		A			
4																		/!\			
5								Result										(1)			
6										e	v										
7																		/:\			
0																		- : \			_
10																					_
11																	2 3	4 5 Kinetic Energy	6 (eV)	7	4
12																					
13																					
14																					
15																					_
16																					
1.9																					
19																					
20																					
21																					
22																					
23																					
24																					-
25																					-
20																					
28																					
	WF Ca	alculator	Sheet2 Shee	t3 / 🞾 🖊								I ∢									
Ready																		100% (-)-	Ų		(+)

计算截止边的小程序

	9-	("→) =	#11					WF	calculat	or.xlsx - Micros	soft Excel									x
	Home	Insert	Page Layout	Formulas	Data	Review V	iew Ad	crobat											0 -	⇒ x
-	🔏 Cut		►/ 4	- 11	- 4 .		N			Canaral						×	Σ AutoSum	• A- aa		
	Сору	7	књ	• 11	AA					General		<u>≦</u> ≸		±			🐺 Fill 🕆	Zrun	1	
Past	e 🛷 Format	t Painter 📙	<u>B I U</u> -	🗄 🔹 🖄 🔹	$\mathbf{A} \cdot \begin{bmatrix} abc \\ A \end{bmatrix}$	E = 3	*	🚈 Merge & Ce	nter 👻	ഈ ≁ % ,	•.0 .00 •.€ 00.	Condition Formatting	nal Forma g∗asTable	t Cell • * Styles *	Insert De	elete Format	Clear *	Sort & Find Filter * Selec	&∠ t *	
	Clipboard	G.		Font	G.		Alignme	ent	G.	Number	Ta		Styles		C	ells	E	diting		
	E1	- (f _x	5.55																*
	A	В	С	D	E	J	K	L	M	N		0	Р	Q	R	S	Т	U	V	
1					5.55	ļ		Paste cu	it-of:	f data to	yello	w box								
2	Axis	Energy	Elements=	2501				Enter ma	aximu	<u>ı from di</u>	fferen	tiated	data i	n blue	box (as	1	1	ifferentiated cut	m	
3	D. VTheses	Ri ala anà C	0141020\-1		UDC 20141	020\111 1.4		#00E\U_1		ahad Diana	10 HCD							A		
4 5	U:\Inermo	ofisher(2	:0141030\sr	iao qinsi	(0F5_20141	.030\0¥_61	asea\Au	#005(Valer	nce_et	спеа_віаse	TO. VGD							(1)		
6								Kesurt	-									1:		
7									6.	27 eV								/i\		
8																				
9																		!		
10	Binding E	Energy (E	;)														2 3	4 5	6 7	
11	eV		Counts /	S														Kinetic Energy (e	V)	
12	10		215497																	
14	9.99		216613																	
15	9, 97		210013																	
16	9.96		215580																	
17	9.95		214314					<u>`</u>	シロ	云山石石		L)+	-							
18	9.94		217153					「「「」	い守	王旧	隹仏」	エル	J							
19	9.93		214232						<u>, </u>				_							
20	9.92		210254						$\overline{\nabla}$ -	-6 2	7e\									
21	9.91		210771						<u>. </u>	0.2	101	/								
22	9.9		212906																	
23	9,88		207733																	
25	9.87		210531																	
26	9.86		208332																	
27	9.85		205079																	
28		alculator S	205736 heet2 Sheet	3 / 🖗 🗌 /																
Ready																		100% 😑 🗕		
																	ia l		8	1. 21
			Tash													STZ.		15		
																YU -		12		R
18.3	-122	<u></u>	1					1 1000										115		
Tt	记送	行士	-笛		A			1				1	0	1 0				6 2		S G
クリ	凹文	スト	异		Ψ	= 1	v-	(Ec.	itof	- C	Ear		= 2		-		172	Las To		
									IUI		геп	1117	2 0	-	1		2201		Star Si	
							(0	7510	2 1)7_	5 1	201	1					Part /		1
								/ .)T() . /		1 1 - 1		1 13							2000

镀膜样品UPS测试制样图

4个样品的表面与Au通过铜箔导电胶带连接在一起,保证这些 样品的上表面电势相等。用Au标定费米面位置。

Escalab 250Xi Multitechnique

■ UPS 分析PFO OLED薄膜

OLED 薄膜

使用UPS测量材料改性前后的功函数 A

OH

Х

HO

N H

OH

SCIENTIFIC

Z

Yinhua Zhou et al, Science 336, 327 (2012)

UPS分析共混聚合物

C1s 谱比较

UPS分析共混聚合物

二、反射电子能量损失谱(REELS)

• I: REELS的原理和功能

• II: REELS的应用举例

REELS基本原理

- 已知能量的电子发射到样品表面
- 部分电子发生非弹性碰撞,转移能量给 材料
- 这部分能量用于激发材料的声子,电子带间跃迁,内壳层的离化等,这些结果的合理解释一般需要第一性原理计算的配合。

REELS结合UPS用于材料完整价带谱的研究

OLED 薄膜

Escalab 250Xi Multitechnique

Escalab 250Xi Multitechnique

能级分布图

OLED 薄膜 PFO的能级分布图 结合 REELS 和 UPS 数据

利用250Xi系统的两种技术结合
 建立了PFO材料的能级分布图
 揭示了材料价带和导带的电子结构
 测量材料的能隙 (HOS 和 LUS的能量差)
 π1* 对应于最低未占据能级(LUMO)
 PFO的能隙, E_a = 2.5 eV

 $\begin{array}{c}
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ & & \\
+ &$

OLED 薄膜

REELS技术用于材料中的H元素定量

REELS技术被广泛用于分析材料 中H元素的浓度,是XPS技术分析 测量材料元素浓度的一个重要补充。

当材料中有氢元素的时候,通过 软件进行对得到的REELS谱的零能 损失峰进行谱重拟合分析,就可以 直观地得到氢元素在这个材料中的 浓度信息。

如图所示,对一系列含氢材料进行REELS测量计算的的H浓度结果和实际材料的理论预期值相当的一致。

1. http://www.nist.gov/srd/nist64.cfm

Sample	concentration/at/o	concentration/at/o
AI_2O_3	0	9
AIO(OH)	25	29
AI(OH) ₃	43	40

三、离子散射谱(ISS)

•1: ISS的原理和功能

• II: ISS的应用举例

ISS基本原理

- 已知能量离子(He+, Ar+)入射到 材料表面.
- 通过研究离子所损失的能量来探测 材料表面的原子质量.
- 离子的德布罗意波长特别短,因此 该技术更表面敏感,1-2个原子层.

 $E_0 = E_s + E_2$

 $P_0 = P_s + P_2$

原理公式:

根据弹性碰撞的动量、能量守恒

ISS用于材料表面的元素成分鉴别(同位素鉴别能力)

如下图左所示,是标准金材料的ISS谱,而图右所示是未知材料的ISS谱,图中 两个能量位置的峰分别对映质量数为16(A)和32(B)的原子信息,即对应于 O和S元素。

应用:合金表面分析

ISS分析样品最表面1-2层的原子信息,因此ISS对样品的表面污染更 敏感。

案例: OLED薄膜

实际问题

- OLED提供了强大的显示器解决方案
 - 高节能、安全便携
- 生产高质量、高效的OLED器件
 - PFO拥有比较大的光学能隙
 - 精细优化其化学性能可以调 控其电学性质

解决方案

- 多技术结合分析研究PFO的价带电化学 信息
 - 高能量分辨率XPS检测分析
 - UPS结合REELS分析价带谱

小结

- XPS用以检测原材料PFO的纯度
- UPS技术得到重要的电子结构信息
- 多技术联合得到材料的能级结构分布
- 这些信息用于反馈工艺以改进材料能隙 大小以及半导体类型

拓展功能和应用回顾

- 价态谱信息
- 一些共混物材料中的物质成分
- 功函数信息
- 结合REELS可以得到价带、导带相对于Fermi能级的分布
- ISS可以用于元素成分鉴别